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ADSUACT

In this paper the non-symmtria, free, elastic vibrations of thin domes

of revojution are studied. It Is *ssumed that the frequency Is lcw, The

asymptotic approximations previously given by the writer are uscd to estimate

the general solution to the shell vibration equations at low frequencies.

Approximations for the low natural frequencies and modes are derived syetemdt-

ically under a variety of edge conditions. Low natural frequencies are found

only when the edge conditions impose no forces tangent to th#. shell iurface.

dnen the edge is free (and only then) Rayleigh's inextensional frequencies

are recovered. For cer'tain other edge conditions rew natural frequencies are

found that are above Payleigh's frequencies but still low compared j... with

the lowest me.brane frequency. The displacement modes associated with th.se

new frequencies are mostly of inextensional type. The general results a--e

appliad To estimate these naw frequencies for spherical domes.
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1. 5TVIODUCTION

1he inextensional vibrations of thin shells were* first studied

by Raylelgh jii]1 and since that time his procedure has often been

used to estimate natural frequencies for -iariou s hell shapes. T'he

frequencies ootained by this procedure ame mucb lower (for a thin

shell) than those predicted by any ether method and are therefore of

great practical interest in sach appli-Ations as tents, parachutes,

and metai or plastic con~tainers.

Ihowevsr, theme are good reasons for skepticism conceruivig the

generality of Rayleign's proctdure. For ex-empie, L~ove [2) has shwn~

-Mit tne modes satisfy neither thea mztion equiations nor (with a Few

exceptions) the edge conditions. Also, Arrqold a"d qlarbtrto. '(3-

onseved hat Ra3ylaigh's prozedure gave good agreeent with. experi"ents

in esce 4oas-s, bu~ thiat changes in the edge condition-, -.ould c-ause enor-

!sous; changes in the lowest measured frequencies and coftpletely d#'st roy

the agrewemewý. It appear--, therefoes, tnat we do not underetand these

VID'brations as well as we ought to.

In tht, present paper we shall show how inextansional nodes 4nay be

systematically derive.] fran a general theory of sholl vibration, without

explicitly assuming that the mode is inextensional. Rathar, it is merely

assumed that the frequency is low ( in a sense th4at will later be made

morp precise), and from this a-ssamption inextenzional --,one and fr*-

queuzcies art derived. This chang* of prooodure is important for two

N-imbers in brackets designate Refermnces at end of paper.
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reasons. rirst, we find that inextensiona. modes -au te derived only

fur certain edge conditions, and this sheds light on the questions

raistd in [2] and [33. Second, the new procedure leaves the w;ay open

te find alJ Iou froquencies, whereas Rayleigh's procedure is limited

i.j freq•zencies for which tiý* modal bonding enery greatly exceeds the

clcal streetchrng energy. For v.rtain edge conditions, we shall rind

inextensional modes with frequencies different fron those ohtained hy

3ayleigh.

To demonstrate the procedure in a context general enou%'h to 5e

convincing but simple enough to avoid unessential ranipulatiens, we

consider a general dome of revolution oxecuting mall, non-symmetric

vibrations. We shall use the approximations obtained by the 3uthnr rl]

vo write down an approximate general solution of the differential equa-

tion system when the fre.rijncy is low. This solution is zubstit';ted

into the boundary conditioas, the resulting frequency determinant is

solved and the ratios of the arbitrary cc-ntants are found. This en-

tire process is carried through for Ifour different edge conditions,

starting w.th a free edge and proceeding at each stage to the "freest"

of the remaining -dge conditions. The frequency increases with each

new edge condition until we exhaust all edge conditions for which low

frequencies can be found.

ror the two "freest" edge conditions this procedure gives com-

plete estimates of the mode but only an order-of-m-agnitude estimate of

the frequency. To find frequency estimates we use Rayleigh's Princiole

for these cases. In the other" two cases explicit estimates are found
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for the inextensional frequencies. The general formulas are applied

to a spherical dome, and numerical results are obtained for the pre-

viously unknown inextensional frequencies.

2. r•JNDAPXNTAL EQUATIONS AND SOWTIONS

We shall adopt as ow starting point the equations of thin-shell

theory propounded by Sanders M5] and modified by the inclusion of

translational (but not rotational) inertia. All effects of transverse

shear and thickness change are omitted in this theory. We may wr!t*

the system in dimensionless form as in (4.

S2 u' + wr5 ', 86Y = uf + vM +wr 0  
( )

fse l1/2(v" - uM- vf)

bs= -w, + urs'l b a vr,0 ' + wM (2)

kss bs% 00 = + Mb# f 0

(4)

Sks e 1 1 • { b 9 " - • i b + 1 / 2 ( r 8 I r s-X" ) V " v f + u m ) ,,

n 55 8' 0 Yee0 3 (4)

S(I -V)

nso

qs : +ss f( -•I' " 8 ) + Nt 5  (6)

q r + 2fm s - eas

3
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,he motion equatioms are

(1 -v 2 )"l U-33 ÷ f+ n ss "nee) t-r9 i PM 6 u

+ cz(qs•r' + l/2Ise(rs" re')) 0 (7)

(U - v2)-(n + 2fnso Nn88) + 02v

+ c2 (qr 6 ' + 1f2t(r . -I )e1 = C (8)

(I- vZ)-L(Ussr, 1' + n r -1) - 22w - c2 iq" i * Nqf% + 0 (9)e8 B
Here in dimensionless form u, v, and w are the .eridiaol,ci-cut"'erential,

and normal displacements, Yss, Yee and yso ar,. the middle surface stra{ns,

bs and be the rotations dnd kss, k0 0 and k the zutvaturre chanrs. The

n's, m's, and q's are the direct (membrane) stresses, Iendin- ioenms. and

shears, respectieely. Also rs and r are the principal radii of c-,.rvature,

v is Poisson's ra•io and

E;' h 2/[12R2(1 - v <) .<< 1 (1)

f(a) = re I cot *, M(a) = mr cSC

where w is the frequency. o the mass density, E Young's modulus, h shell

thickness (assumed constant), R a length characteristic of the radii of

curvature, m the circumferential wave number and # the angle betwc.en the

normal tc the shell and the axial direction. Primes denote differesntition

with respect to a , which is dimensionless arc length along a mer diatn

The boundary conditions at an edge have been given by 4mnders 151

and consist of prescribing

PEor u

N o•' v

Qs or w

M or D
ss

'4



where

N Vs + C21/2(l - v2 )(3r -t - rs-) ns

so as0 3 s

Qs z '* +Ph 0  (12)

D x w" = -bs + urs

The principle of conservation of energy for the vibrating shell

states that

EK ES" EB -L 0

where

EK l2 f(UZ + vz + wz) rosin Ido z g 2 K

ES z (1 - v2) 1 f(nrssYss + neee + 2 nseYse) r. sin# do (13)

EB = cdf("sskss + meekee +2msekso) :, sin* do

and the integrals are extended over a meridian.

We shall now describe the approximations that we shall use for

the solutions of this system. The system is linear, of eighth order

and has singularities where sin 4 = 0.2 We limit ourselves to tne

case where

rour of the eight solutions vary rapidly with a (!.e. along a meridian)

and are called bending solutions, and four vary cuct more slowly and

are calPed membrane solutions. The approxinations for the bending

solutions are quite different from the approximatiors for the membrane

solutions. Two solutions of e;h type are singular where sin * 0..

We shall now list the approximations to the four bending solu-

tions, first r.ear sln 4 = 0, th2e for sin # f 0. The latter are

2 W# sauMe that sin * 0 at, and only at, the axis, and that the

&pen of the dow is of second degree.
Sap@• egree



linear combinations of the approximations obt~ained in (14J for the case

ar < .1.

ror sin 4 0:

w w Alber (x) A2buim (x) + A3 ker,,(x) + A~kei ,(x) (14)

x =(1 jj2)I/'4 A# X A / i .(5

ror sin# 0:

n 3 H [G. (Aleyc(a) ,A teys(a) + A 3 we yc(a*) -A4 ,Ysa)

n Ss1 A1'H {r esa * - A~e'Ic(a*) 4-A 3 e-ys(a) t~ A~e- ~)

se n (16)

AH [( -v)] A~eyc(a*) + A2 eyg~a*) - A 3 rety-(a) +

S9 Awe-YS(a))

V1 F -A" MrV]

where t; 3are rqi % ccmstants end

(r- - P2)1/4d

c¶~0

Edx/du A(r 8 (18)II '

h S ul - fl')EI/J (2r in 1/ (r - 12)-3/

Y ' 1 /2 'x a ,y (v8 (1/2)miw + (1/4 )7



c(a) 3cos a. S(a) I sin a

c(a*) ! cos a* s(W5 ) s sin a0
+vr(-' _V )r,-l

r-- rs + r * (l-v 2

G v s (2+ v)r, -'

In deriving these foxrulas we have asstwed that a Is measured from

the apex of the dome. Also, R is chosen as the commn val-e of the

princips.1 radii of curvature at the apex. Then rs(O)s r,(O) - 1 and

the definition of x for s.in # =0 !s a continuation of that for sin 4 0 0.

These approximate formulas were obtained by an asymptotic analysis

of the fundamental system of equations. The analysis indicates, and

we shall assume henceforth, that the errors in these approximations

are all O(A-1 ). For exAmple, we could write

w A He'Yc(a) [1 + A-, ~* He~fs(a) U1 +)-I (0]

n (J) - 0(1); j = 1, 2, 3,...

and sizilarly for all the other variables. General expressions for the

corrections are not known, nor do we know even the leading tems in

their expansions in A-1 although these could presumr:.., be found.

Fcr the sake of brevity we sha.L refrain from indicating these tortertion

terms in our equations, upon the underetanding that they are generally

S0(WI). However, thsre are several, rather important, equations in which

the leading terms cancel, and in those we shall write down symbnls ro.

the correction t*rm even tho-ugh we don't know them.

In general we assues that terms which am OC( ") are negligible com-

pared vith those that are 0(1). This gives us a rationale for deciding

when these bending solutions are approxi•ately static, for, expanding
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all toe approximations in powers of g2, we see that the static asymptotic

approximationz are obtained when

U2 . 0 (.-1). (19)

The approximetios we shall use for th* membrane solutions are those

described in [E4. At this point we assme that

62 < 0 (A'-). (20)

Then the membrane solutions separate int,' ,wo groups. Two (labelled

5 and ,,) are approximately the static membrane solutions. Two (labelled

7 and 8) are (for m > 2) approximately the inextensional solutions.

When (20) is satisfied1 all the qantities associated with these four

solutions are approximately static (i.e. indeperdent of Q ) and 0(1)

except the direct stresses of the inextensional solutions, which are

GI the f orm

n AT[n () + C2 n (03 + A rý2n8(a) + C Inc)] (21)

wnere r&7,, , n7 #8 (C) are 0(l), indepeonmmt of 0 , and are found

oy solving the nmotion equations as a non-homogeneous set of three

equations in wnich the quantities multiplying C? and E2 are known in

ad':ance from the conditions of zero strain.

Of the eignt solutions, four aro singular at #= G and must be

oiscard-d for a dome. We may take two of these as the nembrane solution

numbered 6 and the inextensional solution not•bered 8, and we see from

(I") tbat the remaining two are the bending solutions numbered 3 and 4.

Tngus we must take

A3 = A4 = A6  A8 = 0.

The 4pproximate general solution can now be written



v - •Y(A c(a) + A2 S(a)) + A5w(S) + A7w(7)

u A- AGey (-A s(a*) + A 2c(a)1 + A5U(S) + A7U(7)

v G A-2 v Hey (A 1(&) - A 2c(e)) + Asv(5) + A7V(7)

bs =A•eY {-AIc(a*) - A2s(a*)) + A5bs(5) + A7bs(7)

be : HseY (A c(a) + A2s(O)) + AC,"0( 5 ) * ATe(?)

MoS3 * A2 H1ey {A 1 sl() -A 2 c(a) ) + A5 mss(s) A7 asSI (22)

mee S A2 v•l {(AIs(a) -A c(a)) + A5ma0 + A (m )

r os 0 ANl(-v) HeY {A c(a*) + A2 s(a5 ) ) + A5ms6(5) + A 7as.(7)

qs A3He' (A Is(*) - A 2c(a*)) + Asqs () + A7qs
7 )

q2 A2 -M9ey {-A 1s(a) + A2 c(a)) + AS°g(5) + A7 qe(7)

n ss a A-lfGnHeY (Ais(a*) - A2 c(a*)' + ASnss 5() + hT{02ns(), $2 0 n ss(Cl I

n.9 a GnHey (A1 c(a) + A2 s(a)) + A5no(
5s) + A7l(22 nso(2) + An20 (cJe

Q () -4 (C)

anse A-INGnfHe (A1 2(a*) - A2 c(a*)) + A5 ns (5) + A ( 2 n + A n

These approximations are accurate when 02 < 0 W1), m : 2 and sin 4 0.

he-0 a2 < Q- 2 ), all the quantities are approximately static (independent

Of Q) except the direct stresses of the Lnextensional so'ution. These

formulas form the basis for our analysis of low frequencies anwd modes.

9
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3. C.ALCJLATION Of LOW FREQJUL'VIES AMD W)DES

In this Section we shall put the general solution (22) into various

sets of edge conditions and calculate the natural modes and frequencies.

The derivation will be carried out In detail for two cases but results

will be given for the rest. We shall begin with the case of a completely

free edge and then consider succesively "tighter" sets of edge conditions

until the frequency is increased above the rftge, 22 < O(A-1) in which

(22) is applicable.

We assuam the edge is at o z ;01 and sin *(ao) 0 0. A new sot of

constants, B,, jzl* 2, 5, 7 is introduced, definsi by

s1 x A1 h (o 0 )6YOU), S 2 s A2H(oo)eY O0)

B5 2 As. B7  A7,

and we also set

4 -4r 2  -4 (A)A- n () A ^-•r 0-2Uas n-
-4 C() .4 -2 If) -. ()
A n so A ra nso A U rs

In deducing the natural frequency and evaluating the constants it is to be

understood that all quantities are evaluated at a a 2o,

Case (I): Free Edge. nss r Nse : Qs X z s z 0 at 0 = aO

The four conditions are (keeping the leadir; tgzms oly)

nss * BIA'.fG s(a*) - B2 A-1 f nc(a) + B nss(5)
+ 2nss(a) + D)1 0 223)

*so = B IA'1 MGns(a*) 8 A-1 ZMGnc(a*) + Bs5n so(5)

2 (1) -4 z[n O (/)]) (23)

Q I IA3s(ae) -G c2A3c(ah) ) B Eqs +t B (a5)

+ B7 {qs(7) + N A (7) ) = 0 (25)

10



2, B A~s(a)- B 2AZc(a) * B a (So S I aas 0 (26)

where

g 1/2r.0
2(l v 2 )(3r 0$- - rs' )

If we eliminate b using the co•.4ition (23), we obtain a three-squa&r
I

system taat caa be written in matrix form.

X 12 (2X 1 A-4X ) 2A-2IIl 12 13 1' 2

n 21 X22 (Cx +-4x 2) B 5 - o

2-1/1 X 32A-' 2 A1-X 3 A'_X ) B j
where

X 1 . D -sn ( 5 )(N/f;, X22 x-na (5 )/(tG ) X32 z -X22s(a)

X 13 z aO So () - n as()OM/f, X 23S -Das W/(fG, ). 33 X -X 23s(a)

x :n • (m_7) - ra 71Nf
X.1 sO -- as 55

x 24 -. ,ns •)fGr) q ( 171 ) + Aso (7)

x a -• Tsa)
34 s

Wnen B is eliminated, the leading terms in the coefficients of B cancel in
1 2

equations (2") and (25). The dominant t4rrfta in these coefficients then

arise from later tersm in the asymptotl- expansions of na., ne and q. for

the bending solutions. These are not ikow-, explicitly, but we know their

orders of magnitude and designate the unknown functions n and q , both11 21

Qf which are 0(1).

The frequency is found by annul-ling the determinant of this system,

wita the result

Xx - X X 21/2( X - X N X
1' 42 11 24. 21 12 11 22 34.

02A4 X 12 X 23 X 13 2(27)SXx -X x
12 2• 13 22

11



The ratios of the coefficients ar4 found to be

i a A 221 0as (7)c(a*)
1 7 /A

il /l a A'z2~11zam ) l (28)

2 7

5 7

bere Q M 0(1) is a constant that may be determined frm the system.S

The denominator in the frequency condition Z27) Is

X X - X X n Mn(2) - ns()n0a

12 23 13 22 so s o ss

and cannot vanish because the direct stresses associated with ,he .embrane

and inextensionai solutions must be linearly independent. Thus in the range

,02 <. O( ) t•oe frequency condItion can be satisfied only when

£1 1 A^
2

"Since A a I r8" 1 / 2 whenever 2 < O('I), we find that vhere is only one

natural frequency for each a m, 2 in the range 02 O(C1/2). and it is given

U alcr 8 (o 0 ). (29)

We cdrnot determine a, and A because we do not know n1 and n * which$ 11 21

are found from tne secoad terms in the asymptotic expansions of nss. n and

q.. Hience (29) is not of much practical value in calculating the frequency.

However, a first approximation to the mod* is completely determined by

the coefficients obtained in (28), even though we dc not know precisely.

w 2 wMý7), v a v(7)(O), U a U17)(O1

b a x ('7)(01), be a a (7)10)

a X 3 Sin C - 1/,4))+

12
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s o~a XSin 4
90 " -xN(o) $in (( - (4/a')) * q 

1 (30)

F::] Lo
a se I - I w o ) I

n = A-2 (o) x%(o'l cs (r. - (9/4))

z. 2-1/2(. r (a, =2-/4 , _a0 Yro) o/2 s cm(8 j 00t o )2-12~' r(x ~ 1' _si *(o f 1/2 do,~~J~

It ie noteworthy that all the quantities occurring in the&e formulas for. tne
mode are static and rela ively easy to evaluate. The displacemants and
rotations are dominated ky the iqwmensional solution, the meotbrane solutior
is entirely negligible, and t•e kbndng (*dge-effect) solution* have a strcnf
influence on the stress-like quantitea, making possible the sAtisfaction

of all boundary conditions.

Althougai this procsdure has yielded only an order-of..agnitude estimate
for the frequnacy, it has delivered an estimate of the mode that is both more
general and wore co•n•ltet thaen any previously known.

Case (I): n = N a qS D 3 0 at a = 0

Among toe possible edge conditions this is the "freest" except for the
fr4 ,edg of Case (I). The ar a~yis strongly resembles that of Case (I),
and we sMull vorely record the results. Only one frequency is found in



the ranLe ,1 0(A4) for tacn m > 2, namly

A- l a 3/2 6 all{ re(o0)}3/4

alI z 4i(l.) cannot, b found etxplicitly because of cancellation of the leading

terms, as wds true of al. A couplete first-approximation f-r the mode is

founrd

W 2 w(7)(a), u a u(7)(0) v 2 v(7)(O)

Dbe - (7)(0)

bS A COS +, bs (7)(0)

me ()o132)
rose -(1 - v)M (o) xcos r. ÷ ose(7)(o)

qs -^21o)k sin r

qO 2 A (O)M(o)X sin D -

_j&- 2  , ( J
n., V -A 1 (o)Gn(o)x C(a S {( - (/f4))

wnere ; is defined as in (31), and

X = H(o) A(G) r8 h/4(00) sinl/24(o0 )
- (7-( 0)e' - i n/ 37)(10 le

H(oO) A(0 0 ) r e "4(c) sin *(a)

The frequency is somewhat nigner than in Case (I). The modal displacements

are wholly inextensional, and the stress-like quantities are almost entirely

derived from the bending solutions.

We see that Cases (I) and "I") are quite similar. In neither case car.

we calculc.. tine frequency directly, but in both cases we have very good

r•nowledje of tre mode. However, if we use Rayleigh's Principle, we can



I

translate accurate inforwa'ion about the noda into accurate infornation

about the frequency. This is exactly what Rayleigh did fhr spherical domes

and cylinders, and we shall d*rive gern-'al for"ulas for domes with the edge

conditions of these two cases in Section 4.

Case (III): ns 3 N S m 0 at a a 00

This is the "freest" of the remaining bounaary conditions. The analysis

procecds as in Case (1) except that (25) is rwplaced by

W z 1c(a) + B2 s(a) + BS(5) ÷ B1• ) BC.

After eliminating i, the matrix equation of the system ie

-2 Axzz (02A X2 f X24B )
-1/2 +-X2 (^'ij A-4,Xj, 1

whe r nss(r)c(a) ns •)c(a) (
f22 X 2 3 8 f 2 ' )

nss(T) #(a) ft sl4)sla)

-X32 a ' X $ 33 . sa

EFG nfGn

and th3 remaining X's are defined as in Case (I). We find for the frequency

•I2 A 2 X IZ X 2 4- _
: l ( X j - X d i + X I s( X • i d X sd)

and after some reduction

mIIZ 2"1/2 w(" •n .... 0
n aas( )n se (S)-- n s o (4lnss( (33)

i
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The frequency in iiov higher by a factor of roughly t-'2 ti•an in Case (II).

The mode is

IVIb2 fl^(a)•cos(¢ ÷ (,/4)) , be•b()o - rMxcos

"s - (o)xs i m , s -A l(0 )l -MV) -os( ¢ * (314)

n s:
a 

00
?: s ~ n - •o s in {s c ( w / •o)

nee a -Gncos

where

x f O{a)/IJ(ao) )ev (a 0 )

(ass() - se (a)

88 nss so s 0
S n(Q)ns (s) 1 nslnssS)

so0 = 00

00

This mode differs from those in the two precedIing cases in two important

ways. rirst, the displaciennts are no longer completely inextensionai, for

the bending solutions make a contribution to w near the edge. Second the

effect of the membrane solution is not nov cnmpletely negligible but is

felt in the formulas for tt-s direct strscgs.

16



Ca" ( N): n• 26 a~ was D a 0 at a a ao

The alysts is the same n this case a in Case (III) vith an obvious

• ~chanZ6 in the last. boundaryl condition. The natural frequency is found to

2 GF-, a zv 2 ̂ - ' ( 3 5 )

(7) () (S

17 . 1 )(q

• •,-~s -A(a)Xoi• • , be -bj7(Tl~) 4 x stn{, - 1/1-Gs so s as

(A)l1{O• + X A2sIio)Sr•-( 7 (w0))) /

b be b.(7)%0) +. x s (36)

•50 +A Z o • 7oos •(z ,) " -• g W O a • I /v~s n

Ul 2

66 . ,o,7 L . I

nee(Q n, (0, { (/1

what

x{ 21/2{HOl~oIr.O) er~tJ(Oto)

rbis frequency and mods are quclitatively smuch like those in Case (III).

we see from (35) and (33) that the frequency estimate in the presmnt case is

"Urgsr thau in Cane (III) by a simple faector 21/2.

17



The edge conditions considered in Cases (I) - (IV) all iave nss = Nse = 0

at a = o0, ie the edges of the shell have been free to move in directions

tanfent to the middle surface. We have now exhausted all the casas with this

property. If we work out similar analyses for
Ca-M-ns Qs P1 p' - at a = 00Ca'- (V): nss ss taa

Case (VI):u Nso Qs S atro

we see tnat natural frequencies in the range 112 > 0 (A-1) cannot occur, ie. for

these edge conditions all the natural frequencies obey

.12 > -(1).

But all tne remaining edge conditions are obtained from (v) or (VI) by "ti,.htenin-,"

some of tne conditions. Hence in all the remaining cases the natural frequencies

are at leas- as high as in Cases (V) or (VI). We conclude that only for Cases

(1) - (V) can we find natural frequencies in the range

,,2 < ý(C,/2).

No4 it is easy to see from the motion equations that inextensional solutions,

ie. solutions naving the property that

nss, ne.3, ns5 3().1)

and all other quantities are )(l),cannot occur when Q2 > 0(l). Hence ror a dome

inextensional nodes and frequencies can occur only in Cases (I) - (IV), ie. only

wnen tne edge is free tu move tangentially.

18



4 APPLICATIONS OF RAYLEIGH'S PRINCIPLE

In this Section we shall see how estimates of the inextensional frequencies

can be obtained for the Cases (I) and (II) by using Raleigh's Principle.

Rayleigh's Principle states that tor any field of displacements satisfying

the edge conditions on displacements.

nz < 2 L) / K (37)

where Est EB and K are to be calculated frcc. the given field of displacements by

means of (13). The accuracy of the estimated rrequency, CL, depends on (and is

usually much oetter than) the accuracy of the assumed displacement field. de

must emphasize (because it is occasionally overlooked) tne effect of the edge

conditions on tne displaceme.nts. if these edge conditions are not satis'ieý

by the chosen displacement field, Q E may differ wildly fr-om and need not even

be tne larger of the two.

in applying Rayleigh's Principle to Cases (1) and (II) we shall take as

the trial displacements the approximate modes given for these Cases by our pre-

vlous analysis. From (13), (4) and (5) we have
£ S ( l - v2 ) -2 / % ( n0 3

ES (= - v O0 (n * n,.2 - 2vnsnn08 + 2(1 +v)ns2) r sinda (38)
0 sssO so

EB I U -V" (im 2 + mie 2 
- 2Ymsn + 2(1 + U)m 2 1r sintdc, (39)

K = 0 (u 2 + v2 + w2 ) r sin#da (')

Referring to the formulas (30) and (32) for the modes in the two cases, we see

that two kinds ofteram occur, Dazely terms of inextensional arnd edge-effect types.

The integrals of the inextensional terms are of the same order as the terms them-

selves and cannot be evaluated explicitly until the shell shape is specified.

The integrals of the edge effect te-ms are s-aller by an order of na-nitude

thar the terms themselves and can be evaluated explicitly (though approximately)

19



by use of the Laplace Method for asymptotic approximation of definite integrals.

For example in Case (11), (38) and (32) lead to

E (U -V 2 )-2 foOn.02rsincoa

u(1 - V2 )-2 40 [A-j2 (a )X2(a ) r8 (a )sin*(o)Gn2 (0)) Cos 2 t~-(i/4)Jdo

!13{ .4 2 (a )r I (a) sin #(a),& (c[(7 )]2)x
'1 0

xe2 r coS2(l 1/*4) d5j

sae functisz% ez- nas the vailup unity !'nr 6 c a0 nd decreases ra.i. ., zero as

o decreate from o0 . Hience this intelral is of iaplace typei. rý i; , -*e re-,,.on

near a= j, cntribute5 ap;)recidily t,. the Integral. We mnay tn~e rp appoxi-nate

it Dy

(Ar3 )(7)2s;inoi ti/2)fo 2 U sn2~ ~
10 0

7ne irntc~rj. :n tniis expression can ne evaliuated approx.'iately a- i-! on' (31)

7 = {3r'J -1(7)2sintk~ (211'/8)

4ie know tniat .2 )(A-3 ), nence

n~xi, linally we find

in a s7,n-ujr manner Ei, ay z~e estimated,

(J8)3[2r (co0 )]/2[J7)(v )12 sint (colt

Hence for isse (11)

- r(ao)/2]i/2[D(7),o)~sn*oj
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wnere
) ,{[(7 (o)]2t + [v(7)(0)]2 + (W(7,'a)]2)irsin~da

a 80

Applying the same analysis in Case (I) we find

E = O(A 6")S

EB z EB(7) + 0 (1- 5 )

E B(7) = r = {[ross(7)]2 + [M e(7)] 2 - 2 ss (7)m 9e(7)

+ 2(1 + v•m se (7)2 ! r0 sin# do

X = K(O)

Hence we obtain tne estimate

2E (B ) O(A") (42)

We see that in this case the estimate given by Rayleigh's Principle can be

derived solely from the irextensioraal displacements. This is not true of the

estimate Just obtained in Case (II), nor is it true of the Rayleigh estimates

that are obtained for the inextensional frequencies in Cases (III) and (IV).

Equation (42) is of cour'se imwt the %t"imaate that 0uylei-h Used to fin• the

inextensional frequencies for a spherical dome. However, neither Rayleigh nor

any subsequent investigator seems to have been sure of the condit-ons under whic.h

the estimate is accurate. We now see that it is accurate only wh-n the edle of

the dome is free.

21
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S. UJCXTENSIONAL I'RE U'tCIrS FOR A Sf'HERICAL DOW?•

In tijs Section we carry out the caicilation of the two lowest intxtenslonal

frequencie.; for spnerical dcr.e under the edge conditions of Cases (II) and (III),

using fornulas (41) and (3J), re~pectively.

For a spherical d•ne the inextensional solution that i3 finite at * = 0 has

u7 = v(7) = sin *tanr ($/2), m > 2 -- (43)

w(7) -(-I , cos#) tanm (0/2)

D(7) = {sin# - -!i'm + cos#) csc4}tanm ($/2)

and tne xinetic energy is given by

K(7) = K(#0. m) 4 0 tan2 m (*/2)( 2sin 2 # + (-q + cos#) 2 },in4 d•

.e- .;n has shown ho4 this integral can be evaluated For integer values of m.

in Case (I1) Equation (al) reduces to

.1E2 = 2-1/2E3/2£inf0 tannin (#0/2)( sinr 0 -m• (m + cos4o)csc *O}2 (U4)

'i•.•e" :snoa.r ;raA;n-s of the relat-ons between -" ýmj 4, for m: 2 ane 3, ob-

taine2 ".rc.- (,4).

in Case ('I!) the frequency is given by (33). To evaluate this for a

:pnere, we cz;serve first that the nembrane solution finite at * = 0 has (see

.o-s to])

n.k5 -n ss ( )

and (33) reduces to

-1:i1 -2-112(l -v 2 )(m + -Os$o)2 esc*o tan m V 2) (45){ ( n 5 6  •5r nss U ) +rise( al )T I

To find

z nss +n) (.s )
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we :,ust solve the system of equations obtained from the motL..)r ,iquations by

setting c = 0 and taking for u, v and w the inextensional displaceiaents (43).

The governing equation is

dz

- + (m + 2 cz~s#) csc$ z -(1 - v2 )(u + v - w(m + coso)csc#)
d#

and a particular solution (which is all we need) is
z(4o3 z -(1 - v 2 )K (* 0 .m) sin- 2$0 tan"m ( 0/2)

exmbining this with (45) and (33) we fir'd

".2 - cl/2(m + coss,' sin#0 tann 0)

The frequencies predicted by (46) when m = 2 and 3 are shown in rigure 2.

The inextensional frequencies in Case (IV) are 21/2timts those 3f Csse (11.).

23



Ii

b. 1) IqO. SF"I ON

The results derived in the preceding Sections ?id our undernt.indinR, of

inextensiondl modes and the roles they play in shel vihration problems. In

brief, we may say that, when inextensional modes can oczur, they a-•..•socIatf.J

with frequencies lower than those associated with any other type of mode. At

most one inextensional frequency is found for each m > 2, but for a d e npn

can occur if the ed_-e conditions involve significant constrai-,t azainst nr-.'zn

tanz.:nt to tne shell surface. The inextensional frelqencies ;=re tar •rve

sen3.tive to tne edge conditions than are the (nigher) membrane and henrivir

fre- jencies.

de have seen that the procedure used by Rayleigh to find jnextsn-..o3na! 're-

quencies yield. very nearly tne results obtained by the present met'-d for .1

free ed.-e, Case (1). ror Cases (II) - (Vi) the present method ?re?.-cts nodes

dj- predzy, nantl7 inextensional displacements, which cannot be fou.-! hy ýaylei'h's

procedure. The frequencies in these Cases are higher then i'• nise 1) but -t-1i

"z ),..-ared to the lowest frequencies oatained for all the ,-ra iir- ed-e

cor.dit ions.

An interestizng aspect of this analysis is this. When < )(A-2), h

crn .; quantities amonpg all the eight solutions that depend on are the direct

s:reuses associated with the inextensional solutions. When the-e snlutions

re inser-ted in the ocundary conditions and a natural frequency "s calculated,

clear that tne inextensional direct stresses are the ind,'ensaole ingred-

;en!; :;o the calculation. ror, if they are absent fron the freuiency equation,

it :-,ei not contain tne frequency and cannot be satisfied, and no natural

freijencies will >P found, Yet, despite the importance of these direct stresses,
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they can be completely neglected in applying Rayleigh's Principle to find ihe

inextensional frequencies for a free-edged dome.

We have noT considered boundary conditions of elastic constraint at the

edge. In general we may expect that these will produce frequencies lying betwo.,n

tnose associated with that two "pure" edge conditions that are combined to give

tne elastic conditior.. For ewample, the lowost natural frequency associated

with the boundary condition

nss = Nse =W =Es$ +(l -F. )D = 0

wnere 0 < E< 1, should satisfy

GllA-1/2 < U _ aVA-1/2

Altkough we have chosen to demonstrate this procedure for dory'es, it ought

to work equally well for shells with two edges. However, it remnains always

subject to the condition "aet mZ <; 1.

25
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